Верифика́ция по́дписи — биометрическая технология, использующая подпись для идентификации личности.
Верификация подписи может быть применима в областях, требующих автоматизацию документооборота, например, банковское или судебное дело. Алгоритмы распознавания подписи опираются на алгоритмы распознавания образов или математические методы анализа кривых, так как подпись может быть представлена набором точек. Поэтому в задаче верификации часто используется разложение в ряды или аппроксимация кривыми.
Задачу аутентификации пользователя по подписи можно разделить на несколько этапов. Сначала происходит регистрация эталона подписи. Человеку предлагается несколько раз ввести подпись для сбора статистики. Затем происходит выявление и анализ уникальных характеристик пользователя, выражение этих характеристик количественно, а также определение эталонных данных и допустимое отклонение от них. Под эталонными данными подразумевается массив, который ставится в соответствие личной подписи и с которым будет в дальнейшем производиться сравнение. Далее происходит ввод образца подписи. На этом этапе выделяются характеристики введенного образца подписи аналогично регистрации эталона. Затем сравниваются характеристики эталона и образца, происходит оценка, насколько они совпадают. При достаточной степени совпадения образец подписи считается подлинным. В противном случае, образец считается подделкой.
Статический метод
Статический метод предполагает, что человек расписывается на бумаге, изображение сканируется или фотографируется, а далее биометрическая система анализирует полученное изображение. Часто этот метод называют «off-line» методом. Статический метод дает меньше информации по сравнению с динамическим методом, так как известны лишь координаты точек.
Динамический метод
Динамический метод предполагает, что человек расписывается в графическом планшете, который считывает подпись в режиме реального времени. Этот метод называют также «on-line» методом. Динамическая информация может содержать в себе следующие характеристики:
пространственная координата конца пера x(t),
пространственная координата конца пера y(t),
давление конца пера на планшет,
угол движения пера,
наклон пера.
Динамический метод имеет более высокую степень надежности, так как, помимо статической информации, содержит дополнительную, динамическую. Соответственно, последний метод получил большую степень распространения
Алгоритмы распознавания подписи
Для каждого человека можно выявить уникальные характеристики при написании подписи. Исследования в области биометрии предполагают выбор оптимального способа сравнения двух биометрических объектов для конкретного человека. Например, для одного человека характерно быстрое написание подписи с резкими пиками и впадинами, а для другого — постоянно сильное давление на ручку и гладкость линии. Существует достаточное количество алгоритмов выявления различных характеристик подписи и дальнейшего их сравнения. Разные алгоритмы отражают разные свойства подписи, поэтому в общем случае нельзя сравнивать алгоритмы между собой.
Алгоритм, основанный на распознавании образов
Популярные техники теории распознавания образов применимы и для распознавания подписи. Например, скрытая марковская модель и алгоритм динамического трансформирования времени (DTW алгоритм). Также возможны комбинации методов. Подпись предварительно разбивается на участки следующим образом. Вычисляются координаты геометрического центра всей подписи, а затем подпись разбивается на два участка относительно центра масс. Далее разбиение продолжается на каждом участке. После завершения разбиения каждому участку подписи ставится в соответствие эллипс инерции. Эллипсом инерции в данном случае называется эллипс, центр которого совпадает с геометрическим центром участка подписи, а сам эллипс строится аналогично эллипсу инерции физического тела, принимая массу точки подписи за единицу. Таким способом строится пирамидальное представлением подписи эллиптическими примитивами. В дальнейшем сравнение осуществляется между представлениями подписи.